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Abstract 

By means of the jet-bundle formalism, the Second Noether Theorem is formulated for a general 
first-order Lagrangian field theory with infinitesimal local symmetries. These symmetries are im- 
plemented by a linear differential operator acting between the sections of a vector bundle and vector 
fields on the configuration bundle. The problem of the degeneration of the Lagrangian system is 
examined from a covariant and an instantaneous (i.e. space+time split) viewpoint. It is shown that 
in the instantaneous approach the presence of infinitesimal local symmetries leads to degenera- 
tion of the theory. Vertical local symmetries are shown to imply degeneration also in the covariant 
formalism. These results can be extended to higher-order Lagrangians as well. 
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1. Introduction 

In classical Field Theories with gauge invariance, the Second Noether Theorem is the main 

tool to show non-regularity of  the theory and to give conditions on constructing Lagrangians 

which possess a given gauge symmetry [28,17]. The term "gauge invariance ' ,  however, is 

rather ambiguous, because it has been extended from the electromagnetic and Yang-Mil ls  

theories to the general case of  field theories - e.g. General Relativity, String Theory - 

exhibiting symmetries depending on arbitrary functions on the space- t ime manifold and on 
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their derivatives up to some finite order. For this reason in our paper we will adopt instead 

the expression "local symmetry". 
Attempts to give a general definition of local symmetry and a formulation of the Second 

Noether Theorem can be found in [16], and with a more intrinsic setting in [31. 

Here we assume that the fields of the theory are sections of a general fiber bundle 
(E, zr, M) on a space-time manifold M, and Lagrangians are defined on a jet bundle of 

sections. In this we were inspired by [9], where a formulation of the calculus of variations, 

a general notion of symmetry and a version of the Noether Theorem are given. In this work, 
a symmetry of a Lagrangian system is formulated as a wide concept concerning the invari- 
ance of the action functional under transformations of the space of sections upon which this 

functional is defined. 
We focus our attention on first-order Lagrangians; in the last section we will give an 

account of the generalization to the higher-order case of the results of the preceding sections. 

In order to formulate the Noether Theorem we will adopt here the same attitude as in [30] (see 
also [29] for a definition of symmetry and the Noether Theorem for higher-order Lagrangian 

systems) and we will consider only those symmetries represented by automorphisms of the 
fiber bundle (E, zr, M); hence, infinitesimal symmetries are represented by vector fields on 
E projectable on M. About the notion of local symmetries, we confine our discussion to 

infinitesimal local symmetries. 
We assume that the infinite parameters of the symmetries are sections of a vector bundle 

(A,  p,  M)  and a differential operator 79 along zr is given which transforms these sections 
into projectable vector fields on E; these fields are taken to be symmetries of the Lagrangian 

system. These assumptions are justified, since in many cases the gauge transformation group 
admits the structure of an infinite-dimensional Lie group, and its Lie algebra consists of 

sections of a suitable bundle (see e.g. [5] for a review on this topic). These observations 
were our starting point for the development of such a formalism. However, as a first approx- 

imation, we disregard the "Lie-algebraic" aspects of the space of sections of (A, p, M) and 
the properties which the operator 79 must satisfy in this respect. We believe that this point 
of view may prove to be valuable not only with respect to the question of degeneration, to 
which we focus our attention, but also for the effective construction of the momentum map 

associated with the action of a gauge group, even if for this subject, the algebraic aspects 
are of crucial importance. In this context, we propose this work as a first step along the 
determination of the geometric aspects of a gauge system. 

In Section 3 we recall the notion of symmetry ofa  Lagrangian system and the First Noether 
Theorem. In the case of Lagrangians with infinitesimal local symmetries, the generalized 

Bianchi identities are given by means of a suitable non-linear operator D (Section 4). Then 
we come to the problem of non-regularity of the Lagrangian function possessing a local 
symmetry. 

There are different notions of regularity, depending on which Hamiltonian formulation is 
assumed. Several covariant Hamiltonian formulations of a general Lagrangian field theory 
were proposed: we quote to the interested reader the extensive introduction in [ 10]; this work 
also gives an exhaustive list of references, and an exposition of the multisymplectic structure, 
which seems to us to be the most natural between the possible covariant Hamiltonianizations 
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of field theories. We will not deal directly with it since we will only consider the Lagrangian 
aspects. 

Anyway - at least in the case of first-order field theories - the starting point for a covariant 
Hamiltonian formulation is the De Donder-Cartan equation, and regularity means, at the 

very end, the equivalence between the Euler-Lagrange and the De Donder-Cartan equations, 
as it is discussed e.g. in [9]. 

In the "space+time split" approach to an Hamiltonian formulation perhaps - the most 

usual in the common practice - the starting point is the construction of an infinite-dimen- 
sional manifold Q and of an instantaneous Lagrangian function on its tangent bundle T Q; 

therefore one treats field theories in a way that resembles point-particle theories. Even 
in this case one can give a notion of regularity without any reference to the underlying 

Hamiltonian formalism, by saying that the Lagrangian system is regular if the Lagrange 

two-form appearing in the equations of motion (5.3) is non-degenerate (i.e. it is a symplectic 
form on T Q). 

In Section 5 we perform a naive splitting of space-time inducing a splitting on the jet 

bundle of sections of (E, zr, M), and we construct the manifold of initial data which, adding 
some hypotheses, can be identified with a tangent manifold. We define here the instantaneous 
Lagrangian, the energy function and the Lagrange two-form as in [ 11 ]. Maybe a more refined 

treatment can be given, and the splitting of the jet bundle might be realized in more generality 
(perhaps by means of a connection on E), but leading to analogous results with respect to 

the degeneration. 

As a consequence of the Second Noether Theorem, simply considering that the symbol of 
the differential operator 79 must vanish identically, we prove non-regularity of a Lagrangian 

with an infinitesimal local symmetry in the space+time split approach: it is an expected 
result, at least in field theory for Lagrangians on flat space-time or, more trivially, in a local 
frame of reference. 

In Section 6 we are able to prove the non-regularity of the covariant Hamiltonian for- 

malism for Lagrangians with a vertical local symmetry. We observe that this is the case 

for the Yang-Mills-type Lagrangians, i.e. one of the most relevant examples of gauge the- 
try, which are degenerate both in the covariant and in the instantaneous formalism. This 
double degeneration, however, is not characteristic of this kind of Lagrangians: we show 

the example of a Lagrangian with a gauge-fixing term, and we give arguments showing the 

impossibility of defining vertical local symmetries for it. 
In Section 7 we give a brief account on the generalization to the higher-order Lagrangians 

of the interplay between symmetries and degeneration. Even if in this case there is no 

uniquely defined Cartan form, it is shown that a local symmetry implies degeneration in the 
instantaneous formalism, and a vertical local symmetry implies degneration of the covariant 
Legendre transformations associated to the Poincar~-Cartan forms. 

Future developments might involve the Lie-algebraic aspects of these local symmetries, 
relevant for the construction of the momentum map, which in turn appears to be an impor- 
tant tool in understanding the BRST formalism and constraints generated by a gauge group. 
Moreover, it might be very interesting to develop a"covariant constraint theory" and a covari- 
ant algorithm ~ la Dirac. The main point here would be the link between local symmetries 
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and constraints, compared with the similar relation existing between gauge invariance and 
first-class constraints in the instantaneous formalism. Other developments might involve 
the extension of the concept of symmetry. In this respect, some extensions of the Second 

Noether Theorem have been proposed in particle mechanics: see e.g. [19,20]. It might be 
interesting to analyze how one should enlarge the concept of symmetry so as to produce 

similar extensions in the instantaneous formalism. 

2. Notations 

Let (E, ~r, M) be a (general) fiber bundle, where E and M are Hausdorffand paracompact 

finite-dimensional smooth manifolds. M will also be assumed to be orientable. We will 

sometimes use the shorthand notation EM instead of (E, Jr, M). By (TM,  rM, M) we will 
denote the tangent bundle and by VE the vertical bundle of E, i.e. the kernel of the tangent 
projection TTr. If  E is the total space of different bundles, we will use e.g. the notation 

VEM, to avoid confusion. The space of smooth sections of (E, zr, M) will be denoted by 

F(~r) or F(EM). 
The key objects in the present paper are the jet-bundles over E and their geometry, for 

which the main reference, here and along all the work, is [25]. We will let ( jk ,  Jrk, M) be 
the fiber bundle of the k-jets of sections of (E, Jr, M), where j0  = E and 7r ° = Jr; J will 
stand for j1. We denote by ztk,l, (for k >/) , thenaturalproject ion J k > j l .  Wewillalso 

denote by f l s  the jet-prolongation of the section s, and jks  itself will be called a holonomic 
section of jk.  Local coordinates on M will be denoted by x # , /z  = 0 . . . . .  m, the fibered 

coordinates on E by (x ~, ya), with a = 1 . . . . .  r, and finally those on jk  by (x ~, ya, Y~v), 
where N is a multi-index of length at most k: [NI _< k. 

It is well known that ( j k + l  Jrk+l, k, jk )  is structured as an affine fiber bundle, and that 

its associated vector bundle is V E  ®jk V k T*M. This is a shorthand notation for the 

tensor product of the vector bundles zr~,oVE and zr~ ~/k T*M. Then, specializing to the 
case k = 0, VJe  can be shown to be diffeomorphic to V E  ®~ T*M in a natural way 
by means of a map i : VE ®j  T*M > VJE (see [301), which is locally given by 
i : O/Oy a ®dx  ~l  > O/Oy~. 

Regarding ( j k  7rk, M) as a general fiber bundle, we have the well known exact sequence 

0 > V J* M > T J  k > 7r~TM ~ 0 and by pullback the following one in which the 
space ~/~ and 1)k are also defined: 

rt~+l ( z g ) .  ) 

This sequence does possess a canonical splitting. One can indeed define the following 
injecfive vector-bundle morphism called the holonomic lift: 

•, : J r :+I(TM) , 7~, kk(e,+l,U) = (e,+l, Txf lS(U)) ,  

where s • ek+l • jk+] and x = 7rk+l(ek+l) = rM(U). Defining ~k  = Im(kk) one has 
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the canonical decomposition Tk = Hk ¢ Vt. The space F ( ~  j,+,) of sections of ~ turns 
out to be a C °O (jk+l)-module. 

A local basis for F (Tkjk+~) is given by a/ax., o/Oy ° . . . . .  O/ay~v, INI _< k. 
The sections of the sub-bundle 7~kjk+~ are called total derivatives; a local basis is given 

by 

(dx--~) ' p . = 0  . . . . .  m, 

where 

d a a a 
dx~ -- Ox~ + ~ YN+~ a '  INI<_k OYN 

and the sum N +/.t  is defined by N +/.t  = (no . . . . .  n~ + 1 . . . . .  rim). 

The vector bundle Tk* = 0rk+l,k)* T * J  k is the dual vector bundle of ~Tk and has the 

analogous splitting Tk* = ~ ~ V~. 
Clearly, one can consider the bundle Tk* naturally included into T*J  k+l defining 

(ek+l, at)(X) = at(ek) (Tek+~zrk+l,k(X)), ~X  ~ Tek+~ jk+l ,  V(ek+l, at) ~ ~Tk*, where ek = 
7rk+l,k(ek+l). 

With a construction which parallels the one on the tangent bundle of a manifold, one can 
define the vector bundles 

P P 

A = ( " , + , , ) *  A r * . , ' ,  A = A r*J'. 

The decomposition Tk* = n~ ~ V~ induces the analogous one A Tk* = A n~ ® A ~ 
(where it is meant that each fiber (A  'Tk*~ek+ 1 is the tensor product of the two graded algebras 

H *  V* A (  k ) e k + , a n d A (  k)e,+~)" 
We will use the symbol q~k for the C °o (Jk+l)-module of sections of A Tk*. Let ~ t q )  be 

the space of sections of A q Tk* and ¢~k (r, s) be the space of sections of A r Hk* ® j~+ ~ A s v/*; 

then ¢'k tq) = ~-]r +s=q C~k tr's) and ~k = ~_,q ~k (q) = ~-~.r,s ~2r, s). AS a local basis for the 
1-forms on Tk, adapted to the decomposition into "horizontal + vertical" spaces one can 
take 

oh(r, s ) As for the terminology, one will say that the elements of Yk are r-times horizontal 
and s-times vertical (or contact) forms. We stress the fact that, as usual for pull-back bun- 
dles, elements of cP~ r's) can be considered as maps jk+l > A r T * M  ®jk+l A s T*J  k. 
Moreover, from the canonical inclusion Tk* C T* jk+l one can think of ~k as included in 
A ( jk+l) ,  the algebra of forms on jk+l.  

We recall the definitions of the horizontal and the vertical differential dhk, dvk : A ( jk)  _~ 
A ( jk+l)  given by the following relations: for f ~ Coo(Jk), 

d f  d f  Of Of a 
d h k f  = d--~dx// ,  where dx~ - 0x---~ + ~ ~-y-~N yN+~ 

INl<k 
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is the total derivative and 

0 f j  a 
dvkf = ~ ~vatlvYN , 

iNl<_k YN 
a 

dhkdy~ = dx tz A dYN+tz, 
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dhk dx ~ = dvk dxV = 0, 

d a a A dx # . vkdYs = dYN+tz 

Actually, these are the actions of  the objects just defined: 

d~(r's) d b ( r + l ' s )  dvk : d~(r's) ¢ l ~ ( r ' s + l )  
dhk : T  k > T k + l  ' ~ k  )' T k + l  

(for an intrinsic definition of  dhk and dvk see [25]). 
Important properties satisfied by the vertical and horizontal differentials are dvk + dhk = 

(Yr/c+l,k)* d, dvk+l • dvk = dhk+l " dhk = dvk+j • dhk + dhk+j • dok = 0 and Vs ~ F(a ' ) ,  
• k * (jks)* d = ( jk+ls )*  dhk, (J s) dvk = 0. By means of these maps Tulczyjew defined in 

[31] two coboundary operators dh, dv acting on the algebra of  differential forms over the 
bundle joo.  Accordingly, we will drop the index k from our notation. 

I f  Y is a vector field on E projectable on M, its jet-extension on j r  will be denoted by 

y(r). We recall the following local expressions: 

y ( l )  = Xt~ 0 ya ~ ( dYa aOXV~ ~ 
+ - , 

Or a \ dx~ Yv ~x~ ~ Oy~ 

y ( 2 )  = X# 0.~_ + ya 0 y(1)a 0 
Ox~ Oy ---~ + Oy~ 

( d dya a OXOr a OX° a 02go ) 0 

+ ,ff , ax--; - ax--; - Oyf,  

3. Lagrangian dynamics and symmetries 

Here and in the following three sections we restrict to first-order Lagrangians for which 

it is simpler to give the notion of degenerate Lagrangian. Some remarks for an analogous 
discussion in the case of  higher-order Lagrangian are given in the last section. We will define 
first-order Lagrangian system the pair (L, I2), where L : J > R is a smooth function 
(a Lagrangian) defined over the first jet-bundle of  a fiber bundle (E, rr, M), and ~2 is a 
volume form on M. We will eventually ~ use the same notation for the pullback of  the form 
I 2 o n J  k ,k_>  1. 

Let us define 

.~.(L) : J > V*JE, ~.(L)(e) = dj~L(e) = deLy, 

where Ly is the restriction of L to the fiber Jy with Jrl,0(e) = y. 
Upon use of  the transposed of  the isomorphism i, we can identify V* JE with V* E ® j  TM, 

andprojecflngdownonthebaseE, wecanth inkofL(L)  a s a m a p J  ~ V * E ® E T M ,  
which in local coordinates is given by 
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I z a a  ( O.Lv~ ) 
k(L)  " (x , y , yu) l ) x u, ya . (3.1) 

Using the vertical projection v : T J  > TE,  v(~j) = Tzrl,0~j - Tjs~x where 

~x = Trel ~j and s E j (x) and composing Jk(L) with the transposed map of  v ® id, one 

gets a vector-valued 1-form A(dL)  on J along the projection zrl in the sense of  Fr61icher- 

Nijenhuis [7], and by inclusion with the totally horizontal m-form I2 one obtains 

(see [25]) 

LegL(~2 ) = iA(dL)A'2 

,~fm,1) If in local coordinates one has I2 = dx ° /x . . .  /x dx m, and one as a f o r m i n  T 0 . 

defines 

J2 u = ( - ) ~ d x  ° A . . .  A ~ A . . -  A dx m, 

where the hat denotes omission, then one can write that 

OL a 
LegL(12 ) = Oy dry A 1"2 u. 

ab(m+l.l) 
Finally, one can express the Euler-Lagrange form EL (12) e T 1 as EL ($2) = dvL ,,x 

-I-dh (L~L(ff2) )  and the Cartan form CL(I2)  ~ tibl as CL(~('2) ---~ LI~L(~'2) Jr- L$'2. Their 

local expressions are 

OL d OL ] a OL a 
E L ( ~ )  = 0-~ dxUOy--~]dvy A I 2 ,  CL(I2)  = LJ'2+--dvyoy~ AI2U" 

For a Lagrangian system (L,  12), the action integral relative to the open and relatively 

compact  set U C M is the functional on the space Fu(re) of sections of  (E,  Jr, M)  defined 

on a neighbourhood of  the closure U by 

lv [sl = f (js)* (LI2) . 
q t l  

u 

We will say that a bundle-isomorphism (g, ~) of  (E ,  re, M)  is a symmetry of the La- 

grangian system if  it is such that for any U and any local section one has 

Iu[s] = l~(u)[g " s • ~-1] .  

An infinitesimal symmetry is a complete vector field Y on E, which is projectable on a 

vector field X on M, such that the one-parameter group of  automorphisms (gt,  ~t) induced 

by (Y, X) is a symmetry for any t ~ R. If st = gt • s • ~ t  1, then one can say that for any 

U and any section s ~ Fu (re) 

f gt  (jst)* ( L ~ )  = f (js)* (LJ2),  Vs, Vt. 
u u 
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This relation may be rewritten in the form 

d d ^, 
(-~)t=ol~(V)[st] = f (-~)t=ogt (jst)* (Ll2) 

U 

d 
= f Lx(js* (L~2)) + (~)t=o((jst)* (Lt2)) 

U 

U 

U 

where Lx  is the Lie derivative along X, and X Jot is the inclusion of the vector field X and 
the form a.  Considering now the definition of EL(I2), Eq. (3.2) becomes 

0 = f d(XJjs* (L52)+ js*Y(')JLegL(Y2))+ j2s* (y(2)JEL(I2)) .  (3.3) 

U 

If we consider the case in which s is a solution over U of the Euler-Lagrange equations, 
then we obtain the vanishing of an exact form: 

where a is an ,n-form on M. This is essentially the statement of the First Noether Theorem. 

4. The Second Noether Theorem 

The Second Noether Theorem is usually stated for Lagrangians which admit local symme- 
tries: roughly speaking, the action integral is invariant under the action of a group (denoted 
Goor) whose parameters depend on r arbitrary functions and on their derivatives up to order 
k. Groups of this kind have been studied; they have been given the structure of infinite- 
dimensional Lie groups, and their algebras (the infinitesimal symmetries) are Lie algebras 

of sections of suitable bundles (see [5]). We intend to formalize the described framework 
considering only infinitesimal local symmetries, and disregarding the Lie-algebraic aspects. 

Let (A, p, M) be a vector bundle of rank q; F(p) and/- ' ( re)  will stand respectively for 
the Fr~ch6t spaces of smooth sections of p, and of smooth vector fields on E. We will say 
that a continuous linear operator 7 ~ : l"(p) ~ F( rE)  is local along Jr if T'crfrr-j (U) = 0 
when art/ = O. We will assume that the vector field Ptr is projectable on the field Xa on 
M, Vo. Then one can show that its local expression is given by 

~O'(X,y) = E DNori(x) e~i(x)  '1- f~ l i ( x ' y )~ya  ' 
INl_<k 
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where tr (x) = ai (x)ei (x), with {el } a local basis of  F (p).  (For a proof, one can follow the 

same line as in [6, p.289], taking into account the projectability on M.) We will say that 7 ~ 

is a differential operator along rr of  order k taking values in projectable vector fields on E. 
Given 79, one can easily define new operators as follows: for any s ~ F( : r ) ,  let 

79s : F ( p )  -----+ F (s* ( T E ) ) ,  ~ a ( x )  = 79tr (s (x)) .  

We will also be interested in the jet-extended versions of  these operators, namely 

p}l) : Ffp) > r (js* (T J)), 79}I)~r = (79scr)(1). 

An analogous definition holds for the second-jet extension 79} 2) . 

The main hypothesis in order to establish the Second Noetber Theorem is that 79~r is 

an infinitesimal symmetry of the Lagrangian system, ¥cr ~ Fc(p), where Fc(p) stands for 
the space of sections of (A, p, M) with compact support. We will say in this case that the 

Lagrangian system has an infinitesimal local symmetry. From (3.3) we have that for any 

section s ~ Fu (Jr), and for any ~ E F:(p) whose support lies in U, the following equation 
holds: 

O=fd(X.Jy((m )+79: ~rJLegm(f2))) + (t2) 
u 

= f 79(2)~rJEL(12)(j2s ) . (4.1) 

U 

Consider now, for any s 6 F(rr ) ,  the action of the transposed operator (see Appendix A) 

where p* :A* > M is the dual bundle of  p. ThenEq.  (4.1) becomes, forany~r E Fc(zr) 

with supp(cr) C U, and for any s ~ Fu(rr) 

o_- f (:s)) 
u 
I 

f (o', 79(s)). {4.2) 
t/ 

u 

In this equation we have also defined the non-linear differential operator, of  order k + 2, 
79 : F(zr) ) F(p* ® A m T*M),79(s) = t79}2).EL(f2) . j2s ,  whoseexplicitformreads 

I((~y a __) a P )( )l(:i 79(s) = ~ (--)INIDN OL d OL (f~:i - YpeNi) J 2s ~ ~2, 
INl<_k dx~ Oy~ 

where {E i } is the local basis of  F(p*)  dual to {ei}, i = 1 . . . . .  q. 
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By (4.2), 79 vanishes on all local sections of (E, Jr, M), i.e. one has the generalized 

Bianchi identities 

D(s) = O, Ys e I"(Tr). (4.3) 

This can be considered as a formulation of the Second Noether Theorem. 

Second Noether Theorem. Let 79 : F(p)  ~ F( rE)  be an infinitesimal local symmetry 
of the Lagrangian system (L, $2). Then the differential operator 79(s) vanishes on all 

sections of  F (Jr). 

A more sophisticated version of the Second Noether Theorem arises if one requires 

that the bundle (A, p, M) is a bundle of Lie algebras. In this case F(p)  naturally inherits a 
similar algebraic structure, and 7 9 is required to be a morphism of Lie algebras. This implies 

some closure properties on the local coefficients of 79, but does not alter the generalized 
Bianchi identities. 

Now we want to consider the relation between local symmetries and non-regularity (or 

degeneration) of the Lagrangian system. The notion of regularity arises from a choice 

of the Hamiltonian formalism and is expressed by properties of a conveniently defined 
Legendre transformation, which ensures the equivalence between the Lagrangian formalism 
and the Hamiltonian one. In the various approaches to a "covariant" Hamiltonian formalism 

(as opposed to a space-time split formalism), different phase-bundles are proposed in the 
literature, whether carrying a "multisymplectic structure" (see e.g. [ 10,4,26]), or a vector- 

valued symplectic form on each fiber [ 1 8,1 5]. However, at least for what concerns first-order 

theories, the definitions of regularity proposed in these works amount to say that the map 
X(L), defined in (3.1), which we will call for brevity covariant Legendre transformation, 
is a submersion at each point of J .  

As shown in [9], regularity implies that the Euler-Lagrange equations are equivalent to 
the De Donder-Cartan equations, whose solutions are the sections p c FU(JM) satisfying 

p* (~]dCL($2)) = O, V~ ~ r (VJM). (4.4) 

A second "Hamiltonian approach" (and the most usual for Field Theorists) passes through 

a decomposition of the space-time manifold into space- and time-component, the construc- 
tion of a Lagrangian function on the tangent bundle of an infinite-dimensional manifold 
TQ; after that one is in a position to "mimic" what is commonly done for a mechanical 
system, where one can pass to the cotangent bundle T*Q by means of a suitably defined 
Legendre transformation. Since the cotangent bundle of an infinite-dimensional manifold is 
a problematic notion (unless Q is a Hilbert or Banach manifold), we will limit our consider- 
ations to the Lagrangian framework only. "Regularity" here simply implies the equivalence 
between the Euler-Lagrange equations and the equations of motion for the given Lagrangian 
on T Q: see below Eq. (5.3) and also [23,1 ]. The relevance of this equation in the treatment 
of Lagrangian constraints for a mechanical system is shown in [20] and [ 12,13]. 
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5. Degeneration in the instantaneous formalism 

331 

Let us interpret M as the space-t ime manifold. A "physical observer" can be represented 

by a congruence of time-like lines, which de fne  a local splitting of M. Such a splitting 
can be performed in several ways (see e.g. [1 1]). Here, we assume the existence of a local 
diffeomorphism ~o : 1 x 27 ~ U, where U is an open subset of M and I is an open 
interval of  R containing 0. Let us identify ~0(0, 27) with 27 for the sake of simplicity. It is 

clear that in a relativistic framework 27 must be considered as a space-like surface, and the 
local curves tp(., x) : 1 > U, x 6 27, as time-like curves, or rather as the world-lines of 

point-particles at rest in the frame of reference of the observer. 
The tangent bundle T M  splits over U: TmM ~-- Ttl @ Tx27, where tp(t, x) = m, m ~ U. 

Let us define @(m) = (d /d r ) r= t  tp(r, x), with m = ~0(t, x). Moreover, for the sake of 
simplicity, we will identify M with U from now on. 

The physically relevant situation is the one in which the values of  the fields and their time 

derivatives are "smoothly" given at all (space-) points of  27, these values being interpreted 
as the initial data for the dynamics. Thus, we must deal with sections over 27, whose spatial 

derivatives are implicitly assumed to be known. 
With this splitting of the space-t ime manifold, we can "distinguish" between spatial and 

temporal derivatives of  the fields. This is formalized as follows. In the language of jet- 
bundles, we define the sub-bundles j~r, j s  of J in the following way. For a given local 

section s of  (E, Jr, M), let us denote, respectively, by TrnSfl, Tmsll ~ the restrictions of the 

tangent map Tins to Ttl and Tx27. 

Definition. j~r is the disjoint union of the fibers (JT)m, where each fiber consists of  the 

following equivalence classes of  local sections of  (E, rr, M): 

( s'~s')7-,m ifTmSl1=Tmslt" 

In the same fashion, j s  is the disjoint union of the fibers (JS)m, where each fiber consists 

of  the following equivalence classes of  local sections of  (E,  Jr, M): 

(s --~ s')Sm if Tmslx = TmslI :. 

Both j s  and jzr  are affine bundles over E,  whose associated vector bundles are VE ®E 
T*I? and VE ®E T*I "" VE respectively. J is isomorphic in a natural way to the direct 
sum J~- ~ e  j s  (the sum is a fiberwise sum of  affine spaces): the jet bundle decomposes 
into its space- and time-components.  In a similar manner, the jet-extension operator j : 
F(rr )  ~ F(~rl) decomposes as j = jT- ~ j s .  

Local coordinates on j r  and j s  are given by, respectively, 

(xU, ya, y~), (xU, ya, y~), k =  1 . . . . .  m. 

We are thus able to define the concept of  "initial data" for the classical field theory: the set 
of  the initial data is a section of J7-117, which means the restriction to 27 of the bundle jT-. 
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Once the initial data V is given, one can reconstruct a section ~ of the "total" jet-bundle 
J on ~ in the following way: let zr~0 be the projection of jT- onto E, and s = zr~,0(y); 
then 

f, = y ~ j S s .  (5.1) 

Locally, one has 

0 a 

~(X) = (ya(x) ,  ~'~(X), -~xkY (X)) .  

Let us suppose that • is compact: the spaces F (Jl~:) and F (E I ~:) of the sections of the 

restriction to • of the bundles (jT-, zr 7-, M) and (E, Jr, M), respectively, become Fr6ch6t 

manifolds (see e.g. [22]). Moreover, the project ion/7:  F ( J l~ )  , F (EI,~) : y ,  , 

s = zr~0(Y) is a projection of an affine bundle; indeed, the fiber/7-1 (s) is an affine space 

consisting of the sections of the affine bundle g* jT-. 

various means it can be shown that F (Jl'~) is isomorphic to the tangent bundle By 

T F (EI~:), whose fiber Ts F (EI~:) is the space of sections of s* V E. For example, in [ 11 ], 
this is achieved assuming the existence of a vector field ~ on E, projectable on M, and 
always transversal to Jr -1 (2~). Another way of doing this is by means of a connection 
C : T M  x E > T E ,  which can be used to lift on E the vector field @ on M. Then, given 

a section y ~ F ( J l~ )  the corresponding element in the tangent space Ts F (Ei1:) is  the 

m a p E  > s * V E  : x l  > Txg.@(x)-C(@(x),g(x)) ,withganylocalsect ionbelonging 
to the class y (x). We will assume that this identification has been achieved. Elements of 
T F  (EE)  will be denoted by y as well. We will denote by Q the configuration manifold 

This identification is the key for writing the instantaneous dynamics. Let us define an 
instantaneous Lagrangian on the space of initial data: 

E z  : T Q  ~ R. 

Regardingl2asamapJ  > A 'n T*Malongzr l ,onecandef ine the inc lus ion(@Jl2) (e )  = 
@] (I2(e)) which gives an (m)-horizontal form (on J). Then we set 

(Y) = f Y* (L @J$2). Z~E 
t J  

z 

Now we can pursue an approach which parallels the formalism of classical point-particles. 
Given a Lagrangian function on a tangent manifold T Q of a finite-dimensional manifold, one 
can define intrinsically (i.e. without any reference to the symplectic cotangent structure) the 
Lagrangian 1-form 0L = (OL/Oqa)dq a and the energy function EL = (OL/O(ta)(l a - L, 
and give the equations of motion 

-XJdOL = dEL, (5.2) 
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whose solution is the dynamical vector field X on T Q. It is well known that, in the case in 

which dOL is a symplectic form, the solution of  (5.2) is a second-order vector field whose 

integral curves are solutions of  the Euler-Lagrange equations. Then one can say that in this 

case L is regular if dOL is non-degenerate (see e.g. [21]). 
In the case of/~2? on T Q, the Lagrangian 1-form is given by 

o~. T (rQ) , R, o2? (x,,) = f 17" (xyjcL(m), 
27 

where X× - a tangent vector in y - can be considered as a map X v : .U > 17"(VJ27). If 
we write locally, adopting a rather non-standard but useful notation so that O/Oy a (respec- 

tively: O/Oy~, dy a, dye) means "the local field O/Oya(O/Oy~, dy a, dye) evaluated along 
the section y", 

0 xy (x) = x~,  (x)-- + x~r (x)--, 
Oy a Oy~ 

then we can write 

= f xaA'20, 

where the subscript 17 means the composition of  the function within parentheses with the 

section. We will write 

dg a ® 120. 
O ~  (y )  = OYo ? 

2? 

Then, one can define the energy function. Let us consider the total Legendre transfor- 

mation LegLU2) as an application J ) V * E  ® j  A m T*M.  Then, as previously, let us 

define 

(@JLegL(I2)) (e) = @J (LegL(~2)(e)). 

We can define 

£~:" T Q  ) R, 

E E 

Locally, 

E27(~,) = f17 , : ° '~  a--L)$-20. t, Y° 

Let us define ~227 = -dO2? .  For the Lagrangian function/22?, the equation of  motion is 

XJI22? - dEz  = 0. (5.3) 
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We will say that the Lagrangian is regular provided that/2;~ is a non-degenerate two-form. 
We remark that in this case, at least enlarging the infinite-dimensional manifold Q we are 
considering, so that it can be structured as a Banach manifold, the field X is a second-order 
equation, and we are granted that for any initial condition there is a solution for it, and its 
integral curves are solutions of the Euler-Lagrange equations for /~:  (see [1 ]). 

Now let us come to the question of degeneration of the instantaneous formalism in relation 
to the presence of local symmetries. The degeneration of I2~: depends, roughly speaking, 
on the degeneration of O2L/Oy~Oy~. Indeed, let X~,, Y× ~ Tr(TQ). Then X v belongs to 
ker/2~: at y if/2;~ (X r, Y×) = 0, ¥Yr. Since locally, 

02 L 02L (X a oYb 
/2 (xr, \aY aYg ( XaYb- yaxb) + OybOy~ ~ ~x k 

02L (xayb--yaxb))/20, 
+OybOy-----~O p 

the arbitrariness of Yr leads to 

aOXb~ 
- -  - r -g r k ) 

02 L ~ xa(x)=O, 
b a \ OyOOyO ,] p(x) 

OyaOy  x (x) 

_( Xo ,x,=o 
\ OY~OYb ] p(x) "~-Fxk (X) -- \ OybOy-----~O ] p(x) 

From this one can easily see that defining O to be the set 

O =  { x ~ M s u c h t h a t d e t  ( bO2~La ~ = 0 } ,  
\ aYo °Y0 ] e(x) 

then/2~: is non-degenerate in y if and only if the measure of 0 is zero. We remark that the 
condition that the determinant of (02L/OybOy~) be different from zero on J would give 
the equivalence between Euler-Lagrange and De Donder-Cartan equations for spatially 
holonomic sections, i.e. 

P(~Jct(/2)) = 0, v~ e r(vJM), 

where y E F (J/~). 
Let us suppose now that (L, /2)  possesses an infinitesimal local symmetry. Then Eq. (4.3) 

holds, so the symbol of D must be identically zero. :D is non-linear, so we must consider 
its linearization (see Appendix A); writing down the coordinate expression for the symbol 
of the operator D we can immediately deduce that its vanishing implies the degeneration 
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of the temporal Hessian 02L/OybOy~ of  the Lagrangian. Indeed, the symbol of  79 at s is a 

map 

S(~D,s)'T*M , s*(VE)®(79(s))*(VA*® AT*M) ,  (5.4) 

whose explicit form is 

S (D, S) • Otp dx p 

\Oy~Oyb/j dvya®ke'* , (5.5) 
lz,v, INl=k 

where 

OS b p 
Bbi  (S(X)) = f b  i ( S ( X ) )  - -  ~xpeNi(X) .  

Now we have a way of"selecting" the partial Hessian matrix 02L/Oyb~y~ by means of  the 

1-form in T'M: it is enough to restrict to T*I, and still the symbol must vanish: 

0 = S (l), s) • ot0 dx 0 

- -~0  __~k+21~b (s(x))( O2L ~ ( ~2) ¥ot0. , "(0,...,0)/ \aybay~] (js(x))dvya®\ El® 

This implies that the vector B~0,...,0)i (s(x)) lies in the kernel of  the reduced Hessian matrix, 
and hence, for sufficiently general symmetries, we have degeneration of  the 2-form I'2z. 

6. Degeneration in the covariant formalism 

Regarding the degeneration in the covariant formal ism-  which is linked to the surjectivity 

of  ~.(L) as was already pointed out - let us observe that the tangent map of  ~.(L) reads in 
local coordinates 

lm 0 0 
0 le 0 

OxUOy~ ] \ OybOy~ ] \OybOy~fl 

In general, there is no relation between degeneration in the instantaneous formalism and 

degeneration in the covariant one. In any case, let us work out conditions enabling us to 
say that a Lagrangian system with an infinitesimal local symmetry T ~ is degenerate. Using 
(3.2) one can easily see that a vertical field ~ on E is a symmetry of  (L, 12) if and only 

if L~t~ LI2 = dot, where ot is a totally horizontal m-form. We will say that ~P defines a 
vertical infinitesimal local symmetry if for every o e F(p) the field T~tr is vertical and 
L~,o)~L = 0. 
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We remark that the case of Lagrangians with vertical infinitesimal local symmetries 

includes the relevant cases of the electromagnetic field and, more generally, of the Yang- 

Mills fields. 
We can prove the following statement. 

Theorem. Let P define a vertical infinitesimal local symmetry for (L, $'2). Then the La- 
grangian system is degenerate. 

Proof. From L~,,)aL = 0, ¥ a  ~ F(p)one has 

dJleLT~(1)oL = O, Ya ~ F(p). 

In local coordinates the previous identity reads 

OL [ O2L a O2L d~ a o~a~ b 
0 =  ~ ~  + b-----E--  + dYv' Oy v ay# dx# Oya Oyb ] js 

where locally we have set 

~O~ = ~a O/Oya. 

Then for any section s ~ F(E) the following linear differential operator Os has to vanish: 

Os : I'(p) ) F (is* (V*JE)), Os = (dJiELT:,(l,aL) (js) 

and the same must happen to its symbol: 

S ( O s ) : T * M  ' (A*®MjS*(V*JE)).  

Locally, this is given by 

( 02L ) dye®El = O' S (Os)(o~/zdx #) ~- E ogN+/'t f/~i b a 
a.b.i,v,#.lNl=k OYvOY# js 

Then, for the arbitrariness of s one has 

[[ / ~'~ olN+# f aN,i) #vO2t E ayhOy---------~ = 0, Vb, v, i, 
/z,a \INI=k 

and this clearly shows the non-regularity of the Lagrangian system. [] 

Hence we can conclude that if a Lagrangian system has vertical infinitesimal local sym- 
metries, then it is degenerate both in the covariant and the instantaneous formalism. 

However, we may ask whether this is a complete characterization of the link between 
vertical local symmetries and degeneration of covariant systems. Indeed, the following 
counterexample shows that we can have a Lagrangian system which is degenerate both in 
the covariant framework and in the instantaneous one, but which does not seem to admit a 
vertical local symmetry. 



M. C. Abbati et aL /Journal of Geometry and Physics 17 (1995) 321-341 337 

Consider the Proca Lagrangian (the Lagrangian of  the electromagnetic field with a "mas- 

sive photon": A is a 1-form on R 4, and F = dA) 

Lm = -1F~vF#U + Im2A~A~. 

We can consider Lm as being defined locally on the trivial vector bundle R 4 × R 4 ) R 4. It 

is straightforward to see that L m is degenerate both in the covariant and in the instantaneous 

framework (since the only part of  it which contributes to the Hessian is the "free-field" part). 

Furthermore, it is known [8] that the constraints algorithm yields two second-class ones 

for Lm. Then we argue that Lm does not admit any vertical infinitesimal local symmetry 

(as one might already guess by observing that Lm is the gauge-fixed Lagrangian of  the 

electromagnetic field). We wish to state this in a more rigorous manner. 

Suppose E = R 4 x R 4, M C R 4, and that L : J > R admits such a symmetry, and let 

us denote it as usual with ~D(1)O'. Suppose I x 27 C R x R 3, with I a finite interval and 27 

a compact (spacelike) submanifold. We can identify smooth maps s : 1 x /7 - - ~  ~4 with 

smooth curves of  sections t i > st in Q = C°°(27, E) (see [22]). Then we see that 

0 =  f js*(T~(l)aJdL)~ 
Ix2? 

= S. :I2°(~L(DNai(t'x)):~vi(̀ 'x'sb(t'x)) j \Oya 
INl-<k I 27 

+ m__ Oy~ dx# (( "N~ri (t, x))fZi (t,x, sb(t,x) 

X (t)(c,~) : 27 > E x E, 

X ( t ) ( c , ~ ) ( x )  ---- ~ (DNt~ i ( t , x )  f ~ v i ( t , x , c ( x ) )  
IN[<_k \ 

0 

0c a 

+ ((~-~DNori (t,x)) f~li (t,x,c(x)) 

+DNc: i(t,x)~ Ox 0 + Oy b ]]-~ 

Furthermore, X(t)Jd£2? (~t) = (dF/dt)s,. The relations between local symmetries and 
constraints is developed in the instantaneous formalism often disregarding the problem 
of infinite dimensionality. In this context, the analysis of the equivalence between gauge 
transformations (i.e. symmetries depending upon arbitrary functions of time) and first-class 

/ ,  
= ] dt X ( t ) J d £ ~  (st) ,  

1 

where £2? is defined in the usual way on TQ -- C°°(27, E) × C~(~7,  E), and X(t) is a 

time-dependent vector field on T Q defined by 
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constraints dates back to Dirac's works in a Hamiltonian setting. More recently, it has been 

pointed out that not all Lagrangian gauge symmetries are projectable on Hamiltonian gauge 

symmetries (see [20,14]). It is easy to see that in our case X (t) is the lift to T Q of the vector 

field ~ on Q, 

0 
~(t)(C)(X) = Z ON~ri (t, X) f~li (t, X, C (X)) OC--- ~ .  

INl<_k 

This remark implies that X(t)  is aprojectable local symmetry for £~v. We can thus apply 

the results of [2], which show that such a Lagrangian must generate (primary) first-class 

constraints. 

So we conclude that, in the framework we have outlined, there exist Lagrangians which 

are degenerate both at the covariant and at the instantaneous level, but which do not admit 

vertical infinitesimal local symmetries. 

We must point out that the Lagrangian Lm is indeed the prototype of a general category 

of Lagrangians: every time one "fixes the gauge", the first-class constraints are automati- 

cally turned into second-class ones. Finally, we remark that a slightly different concept of 

"symmetry" might lead to an "extended Second Noether Theorem" (see [19]), and this in 

turn might alter the conclusions we have drawn. 

7. The case of higher-order Lagrangians 

In the last sections we showed how degeneration can appear in the instantaneous and 

in the covariant formalism in the case of first-order Lagrangians which possess a local 

symmetry. 

Here we sketch how these considerations can be adapted to the case of higher-order 

Lagrangians with local symmetries. However, in that case the transition to the instantaneous 

and to the covariant formalism is a more problematic notion. We refer to the two papers 

[10,11] for an extensive account on this topic. The main problem in the treatment of a 

higher-order Lagrangian L : j l  > R is that, for m > 0 and l > 2, many differential 

forms CL($'2) - called Cartan forms - arise on j2/-1 which can play the role of the form 

defined in Section 3 for the first-order case. They are (m + 1)-forms on j2 / - I  satisfying the 

following relations: 

CL($'2) -- 7t'~_l, l ( L ~ )  (Xo . . . . .  Xm) = O, when X 0 . . . . .  Xm E 7-~2l-1, 

(XJdCL(~"2)) (Yo . . . . .  Ym) = O, V X  E "V2/-I, VY o . . . . .  Ym E 7"/21-1, 
2/-1 XJCL(~'2) = 0, VX E VJlfl_ j , 

VI2/-1 XJYJCL(J2) = 0, VX, r E ~IE " 

The set of solutions of the first-order equation analogous to the De Donder--Cartan equation 
(4.4) contains the solutions of the Euler-Lagrange equation, but even in the best situation a 
solution p of the De Donder-Cartan equation, which is a section of j2 t - l ,  is in general not 

holonomic, but only projects down to a holonomic section of j l .  However, it is possible to 
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show that the transition to the instantaneous formalism is not ambiguous. Indeed, once that 

the space+time decomposition is performed, one can define on the manifold of initial data 

J~- C j f f -1  (defined in a way analogous to the first-order case), the Lagrange 1-form ~gz 
and the energy function E~ as in Section 5. These objects do not depend on the particular 
choice of the Caftan form and lead to a well-defined equation of motion analogous to (5.3) 
(see [11]). 

If one defines a local symmetry, in the case of higher-order Lagrangians, simply extending 

the definition of Section 2 to the lth-order, one still obtains "Bianchi identities" of the form 

0 = D(S) ---~ t79(2/) • EL (~'-2) (j2ts), YS ~ F(E) ,  
• S 

and using the space+time splitting to select the temporal coordinates, one obtains the de- 
generation of the "temporal Hessian" OZL/OyglOy~t (here 0t means a/-multi-index made 

up of zeros). This implies the degeneration of the two-form 12~ = - d O z  which appears 

in the equation of motion (5.3). Indeed, choosing a vector 

0 02L 
- - ~  6 T v J~ ,  with X a b ~  - -  O, X~, 

Xa(Y) OYO21 1 OYotOYo~ 

it is easy to see that X~, belongs to the kernel of g2z, since using the local expression given 

in [11] one sees that for any tangent vector Yv 

f 02L b ~dgT(Xy, Yy) = OybO------~pl d)/021_1Adya (X),,Yy) = 0 .  

On the other hand, the transition to the covariant Hamiltonian formalism depends on 
the choice of the Cartan form; each of these forms generate a different covariant Legen- 
dre transformation, and one has the best situation between the Euler-Lagrange and the De 

Donder-Cartan equations if the corresponding Legendre transformation has maximal rank 

at each point. This notion of regularity depends on the choice of the Caftan form unless one 
restricts to the Poincard-Cartanforms (as shown in [lO]), or otherwise one can make a par- 

ticular choice of CL (~"~) as in [27]. In all these cases the condition det (O2L/OYbMOy~v) = 0 
implies the non-regularity of the Lagrangian (M and N are multi-indices of rank l). If  a La- 
grangian system has a vertical infinitesimal local symmetry, i.e. L~(t),, L = 0, 'Ca, then one 
can show along the same lines of Section 6 that this condition is satisfied. The only change 

needed is that one must evaluate the symbol of the differential operator d jr L~(t) o L, 

means the vertical derivative on the affine bundle j t  > jr-1. where dJi fit _ i 

Appendix A. Differential operators 

Let (Fi, Pi, M), i = 1, 2 be ordinary fiber bundles. A differential operator of  order l 
is a map O : F ( p l )  > F(p2)  given by O(s) = o ,  j l s  for s ~ F(pl ) ,  where O " 
j l  (F1) )' F2 is a smooth bundle morphism. If (Fi, Pi, M), i = 1, 2 are vector bundles 



340 M. C. Abbati et al. /Journal of Geometry and Physics 17 (1995) 321-341 

and O is a vector bundle morphism, then O is said to be a linear differential operator. 
If F(pi) ,  i = 1, 2 are given the structure of Frtchtt spaces as in [6], differential linear 

operators are identified with continuous local linear maps from F(p l )  to F(p2) (where 

"local" means that for every section s such that s(x) = O, Yx ~ U, U C M open, then 

O(s(x)) = O, Vx ~ U). 
GivenalineardifferentialoperatorO : F(p l )  > F(p2),onecandefinethetransposed 

operator tO as follows (cf. [9]): it is the only linear differential operator tO • F(p~ ® 
A m T ' M )  ~ F(p~ ® A m T ' M )  such that ¥q~2 E r(p~ ® A m T ' M )  

f ( f l , t O ( e m ) ) = f ( o ( f , ) , 0 2 ) ,  Yf ,  t F c ( p , ) .  

M M 

Let O be a linear differential operator. Let ot ~ T* M, a ~ Flx ; let f : M > Rbe such 

that f ( x )  = 0 and d x f  = ~; let further s 6 F(p l ) ,  s(x) = a. Then the symbol oflO is the 

homomorphism 

S : T ' M  > F~®F2,  S ( O ) ( c t ) . a  = o ( l f ' s ) ( x )  = l o ( j t f ' s ( x ) ) .  

If (Fi, Pi, M), i = 1, 2 are general fiber bundles, one can give to F(pi )  the structure 

of an infinite-dimensional manifold, as in [22], whose tangent space TsF(pi) in s is the 

space Fc (s*V Fi) of the sections of the vertical bundle V F/"covering s" and with compact 

support, i.e. sections v : M ~ V Fi such that rFi • v = s. 
A differential operator results in a differential map from F(p l )  to F(p2) whose tangent 

m a p a t s i s T s O : F c ( s * V F i )  > Fc (Os*VF2) : v t  > V O . j l v ,  w h e r e V O : V F 1  > 
VF2 is the restriction of the tangent map TO to the vertical bundles. Thus, for every 

s 6 F(p l ) ,  a linear differential operator A(O)s : F(s*VFI)  > F(Os*VF2) is given by 

extension. We define the symbol S(O,  s) of the non-linear operator O at s as the symbol 

of A(O)s. If Os is given locally by the maps f j  (x, si (x), DN si (x)) , i = 1 . . . . .  rl, j = 
1 . . . . .  r2, where ri is the dimension of the fiber of Pi, then 

8 ( 0 '  S)ij'Olx : ,N~I_IOINx ~ ( sh (x ) 'DNsh(x ) )  ' 

where ax 6 T*M and ~ff = (otx)~ v ' . . .  (ax)m Nm . For the definition of the symbol for linear 

and non-linear operators, and also for its globalization, see [24]. 
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